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The Hill determinant approach to the Coulomb plus 
linear confinement 
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t Visva-Bharati University, Santiniketan 731235, West Bengal, India 
t Institute of Nuclear Physics, Czechoslovak Academy of Sciences, CS 250 68 Rei, 
Czechoslovakia 

Received 2 December 1985, in final form 5 August 1986 

Abstract. An application of the so-called Hill determinant method to the bound-state 
eigenvalue problem in the elementary quarkonium potential V(r) = - a / r +  br is described, 
proved and illustrated for a few examples. An improvement of the method, which is based 
on an extended continued-fraction formulation of the eigenvalue condition, is also pro- 
posed. 

1. Introduction and summary 

For a class of potentials, the Schrodinger eigenvalue problem may be solved, in a 
formal analogy between the finite- and infinite-dimensional linear matrix equations, 
by the so-called Hill determinant technique (Biswas et al 1971). Its rigorous mathemati- 
cal foundation is usually missing (cf, e.g., Ginsburg (1982) and the references given 
therein) and we may often encounter contradictions (for details, cf, e.g., Chaudhuri 
and Mukherjee 1984, Flessas 1982, Znojil 1982, 1983a). 

In the recent reformulation of the above method (Znojil 1983b) applicable to the 
potentials u ( r )  = Z,,,m,-2 y,,r"" we are permitted to reinterpret the usual asymptotic 
boundary conditions or normalisation requirement 

ll*Il <* (1.1) 
as an appearance of the Hill determinant zero. Unfortunately, an unpleasant inequality 
must also be imposed on the couplings yn. 

For the particular example 

l=O,1, . . . ,  b>O (1.2) 
d2 Z(l+l)  a 

r 

with the Coulomb plus linear potential, the latter restriction is not acceptable on 
physical grounds (cf, e.g., the important applications of (1.2) in the physics of 
quarkonia: Quigg and Rosner (1979), etc). 

In the present resolution of the above puzzle, we notice that, in contrast to the 
assumptions of Znojil (1983b), the potential does not contain the r*''2 components. 
Hence, we may use a simplified power series ansatz 

(1.3) 

We shall see below that such a form of ansatz enables one to avoid the contradictions. 
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Our main result will be a rigorous proof of the applicability of the Hill determinant 
technique to equation (1.2), i.e. a proof of the equivalence of equation (1.1) to the 
Hill determinant prescription 

P,(E)=O n >> 1 (1.4) 
in the limit n + CO. 

2. Power series ansatz and its convergence 

When we insert (1.3) into (1.2), we obtain a set of relations 

d, c2 a2 

. . .  

a, = -2P(n + 1 + 1) + a 

b, = ( n  + l ) ( n  +21+2) 

c n i I = P 2 + E  
d n + 2 =  -b,  n = 0 ,  1 , .  . . 

i.e. recurrences 

P n +  1 = -( 1 / bn dnpn-2 + cnpn -1 + a n P n  ) 

with an obvious solution 

Hence, with an arbitrary normalisation p o ,  we may interpret (1.3) as a regular solution 
$( r )  with the determinantal definition (2.3) of coefficients. 

We may postulate a formal decomposition 

(2.4) 

where a , = h o ,  c l = u l h o ,  a , = u , b , + h ,  and 

an+2 = un+2bn+l+ hn+2 

cn+2 = un+2bn + Un+*hn+l 

dn+2 = ~n+2hn n = 0, 1, . . . . 
Then we may eliminate u,+~ = (c,+~ - ~ , + ~ b , ) / h , + ~  and 
recurrences 

= d,+J h,. The remaining 
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together with the initial values 

ho=ao h, = a ,  - c ,bo /ao  (2.6) 

define the factorisation (2.4) unambiguously. They also enable us to rewrite (2.3) as 
a product 

( - l ) , + l  
P n + l  = P O  h o h l . .  . h, 

b o b , .  . . b, 

suitable for analysis of pn+ ,  at large n >> 1. 
The asymptotic form of (2.5) implies oscillations, h,+2 = d,b,b,+,/ h,h,+,. Their 

asymptotic damping 

hio) = h, = hn+, = h,+2 n >> 1 

is analysed in appendix 1. In general, the functions 

may become complex (Im p’ # 0), but the estimate 

(2.10) 

may be used for large n and all energies. It implies that the power series (1.3) will 
converge and satisfies the differential equation (1.2) for all r 3 0 .  

In the origin, the solution (1.3) is regular. Its asymptotic behaviour ( r  >> 1) remains 
ambiguous 

(2.11) 

and becomes compatible with the requirement of physical normalisability (1.1) if and 
only if 

(2.12) 

+ ( r )  = cI e ~ p ( $ & r ~ / ~ ) +  c2 exp(-3&r3/’) 

c1 = c l (  E )  = 0 

i.e. exactly at the particular bound-state energies E = E,, m = 0, 1, . . . . 

3. Normalisation requirement and a rigorous proof of the Hill determinant method 

Lemma 1 .  The asymptotic solution p ,  of recurrences (2.1) corresponds to the exponen- 
tially growing wavefunction +( r )  for almost all energies. 

ProoJ: An iteration of (2.10) gives 

(-’)”n +small corrections [r( n + k ) / T (  r ~ ) ] ’ ’ ~  P n + k  = (3.1) 

We may simplify this relation by means of the Stirling formula: 

[I-( n + k ) / I - (  n)]”’ i= r( n + i k ) / T (  n )  n >> 1. (3.2) 
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Due to the results of appendix 1, we have ( -b )  > 0 and may replace the summation 
approximately by an integral in  (1.3): 

X m 

pkrk- [ pkrk dk k, >> 1. (3.3) 
k = k ,  ko 

Finally, we may change the variables 2k/3 = m and obtain the leading-order formula 

after some straightforward error-estimate mathematics. 

We see that the growing behaviour estimate (3.4) of + ( r )  agrees well with our expecta- 
tions (2.11). An important property of (3.1) and (3.4) is a factorisation of G ( r ) ,  r >> 1 
into a positive function (the exponential also contains implicitly the errors) multiplied 
by the coefficient pn = p n ( E ) ,  n = n o .  It is to be represented by the determinant (2.3) 
and we arrive rigorously at the desired result. 

Theorem. The spectra of energies defined as zeros of the Hill determinants 

det Q‘” = 0 N >> 1 (3.5) 

coincide with the complete physical binding energy spectrum in the limit N + CO. 

ProoJ: The relation (3.4) is to be considered as a function of energy E. As long as 
pN = p N ( E )  is a polynomial, the approximate asymptotics of $ ( r ) ,  r >> 1 will change 
sign precisely at the zeros of pN(E).  Thus, in accord with the standard oscillation 
theorems valid for the general Sturm-Liouville problem of the type (1.2) (Ince 
1956), a new node of $ ( r )  at large r may be interpreted as an appearance of a new 
bound state. Hence, the corresponding energy may be approximated by the zero of 
(3.5) at a sufficiently large N >> 1. 

4. Simplification of Hill determinants via the extended continued fractions 

In the practical applications, the zeros of determinants (3.5) may be found numerically 
via the factorisation 

(4.2) 



Hill determinant approach 

n = 0 , 1 ,  . . . ,  N 

f"' N+1 - - f N + 2  ( N )  -0 - 

convert (4.1) into an algebraic identity. 
The main merit of the factorisation lies in its consequence 

1405 

(4.3) 

N 

det 0'"' = n l(fLN))-' N z 0 .  
k = O  

When we assume 

l/f:"#O N = = k > M s O  

(4.4) 

(4.5) 

we may convert the Hill determinant secular equation (3 .5)  into the abbreviated 
extended-continued-fractional ( ECF, Znojil 1981) prescription 

M n l/f:"=o N >> M. (4.6) 

Let us show now that we may use always M = 1 in (4.6) and ignore the assumption 
(4.5) completely. 

k = O  

Assuming the opposite, we shall have such M > 1 that 

l/f ril+ 0 i.e. fr+)l + CO. 

Then equation (4.3) with n = M implies that 

f"' d (4.7) ( N )  ( N )  
1 / ( f M  f M + 1 ) - )  b M ( - C M + l + b M + l  M + 2  M + Z ) *  

In general, it is a definite (0 x CO type) non-zero factor computable by recurrences (4.3) 
for any M < N.  Obviously, the pair of factors (4.7) may be cancelled out of (4.6) and 
the assumption (4.5) proves redundant. We could easily put M = 0 in (4.6). 

Of course, it may also happen that the right-hand side expression in (4.7) happens 
to be zero. Then, we get l / f r '  = a M  < CO and, recalling (4.3) once more (with n = M - 1 ,  
i.e. for all M 6 N but M = 0), we get the conclusion that 

1/ (fM -lfMfM+ 1 )  b M  - 1  bMdM + I M a l .  (4.8) 
Thus, we come to the final result-equation (4.6) may be given the simple ECF form 
1/(fAN)fiN') = 0, N + CO, i.e. 

(4.9) ao/fi"' = bo( c1 - blfi"'d2) 
in the N + C O  limit. 

Numerically, the ECF convergence of the transition N + C O  proves to be rather 
slow-this follows from the existence of oscillations which are only slowly damped. 
A more thorough account of this phenomenon being given in appendix 1 ,  we may 
only conclude that a 'smooth-ECF' domain with 

(4.10) 

should be used as a means of accelerating the convergence. Indeed, an algebraic 
specification of the ECF approximation (4.10) is quick and efficient. The 'fixed point 
expansion' (Znojil 1983b) result is to be used in place of the trivial ECF initialisation 
in (4.3). In the leading-order approximation, recurrences (4.3) imply that the fixed 
point value (4.10) satisfies the cubic algebraic equation 

b,b, ,+id,+~S'-b,c,+,f~+a,,f  - 1  = O  n >> 1 .  (4.11) 

M >> m >> 1 fzf;wlzf;M)- ( M I  ( M I  
- - f m + ,  = f m + 2  



1406 R N Chaudhuri, M Tater and M Znojil 

Hence, it is sufficient to put a,  - -2pn, b, - n 2 ,  c, = p 2 +  E,  d, = - b  and to analyse 
the form of corrections by means of the Cardono formula. 

5. Quarkonium spectra 

As an illustration of the applicability of the present method, let us compute masses 
of the quark-antiquark CC and b6 bound states. The corresponding eigenvalue problem 
( l . l ) ,  i.e. the Schrodinger equation 

H ( m ,  a, b ) R ( r )  = E R ( r )  llR(r)Il<* (5.1) 

with the mass-dependent Hamiltonian 

may be simplified by the scale transformation 

1 
m 

H( m, a, 6 )  = - H( 1, ma, mb)  = ma2H(  1, 1 ,  p )  

p = b / m 2 a 3 .  

Thus, we shall restrict ourselves to H(1, 1, 6) and postulate a solution of the form (1.3) 
X 

R ( r )  = r' exp(-pr) pnrn 
,=O 

(5.3) 

valid in the region 0 d r < CO. 

Since the zeros of det Q ( N )  determine the energy eigenvalues &( l ,  a, b )  of the 
eigenvalue problem, the bound-state masses of the qq system are given by the formula 

Mfldq~)=&(mq,  a, b ) + 2 m q -  vo. 
The free parameter p is to be adjusted so as to give an agreement between an 
experimentally observed value of the ratio (3s- ls)/(2s- 1s) and a value determined 
from (5.1). 

Table 1 shows the dependence of 

(5.4) 

Table 1.  The dependence of the ratio [E,,(l, l , p ) - E l o ( l ,  1,p)]/[E2,(l ,  1 , p ) -  
,ElO(l, 1 ,  p ) ]  on the parameter p. 

~ 

3s- 1s 
P 1s 2s 3s 2s- 1s 

- 

0 -0.250 -0.062 5 -0.027 7a 1.1852 
0.025 -0.18045 0.149 63 0.320 58 1.5179 
0.050 -0.117 82 0.3 10 43 0.561 38 1.5860 
0.075 -0.059 46 0.451 42 0.768 46 1.6206 
0.1 -0.004 1 a osao 31 0.955 79 1.6424 
0.125 0.048 71 0.700 63 1.129 50 1.6579 
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Table 2. Bound-state spectrum of the cE system (in GeV). Experimental and Dirac bound 
states are taken from Barik and Barik (1981). 

State 

1s 
2s 
3s 
4s 
5s 
1P 
2P 
Id 

Hill 

3.0970 
3.6860 
4.03 11 
4.3075 
4.5500 
3.5917 
3.9460 
3.841 1 

Dirac Experiment 

3.097 3.097 
3.6700 3.686 
4.0303 4.030 
4.2761 - 
4.4680 4.417 
3.5208 3.521 
3.9156 - 
3.8038 3.772 

Table 3. Bound-state spectrum of the b6 system (in GeV). Experimental and Dirac bound 
states are taken from Barik and Barik (1981). 

State Hill Dirac Experiment 

1s 9.4336 9.4336 9.4336 
2s 9.9944 10.0147 9.9944 
3s 10.3230 10.3547 10.3231 
4s 10.5861 10.5976 10.5476 
5s 10.8170 10.7872 - 

9.9046 9.8517 - 1P 
10.2420 10.2414 - 2P 

Id 10.1421 10.1310 - 

on p. We have chosen p =0.05, which is in fairly good agreement with experimentally 
found values of (3s-ls)/(2s-ls), namely 1.5840 for the cE system and 1.5861 for the 
b6 system. Taking 1s and 2s as an input we obtain 

(i)  cc 

MnI(m,m,)=1.375 3649 &( l ,  1,0.05)+3.259 045 (5.5) 

(ii) b6 

Mnl(m,,m~)=1.309 5155 &(l, 1,0.05)+9.587 887. (5.4) 

In deriving these equations we do not need the values of the quark masses. 
Tables 2 and 3 show the bound-state spectra for the cS: and b6 systems, respectively, 

in GeV. The Dirac bound states are taken from Barik and Barik (1981) and they may 
serve as estimates of relativistic corrections. We infer from table 3 that the corrections 
are rather small. For the 5s state the correction is only 1.8% for the cE system and 
0.3% for the b6 system. 
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Appendix 1. Outline of the proof of the real-fixed-point approximation (2.8) 

The coefficients in (2.4) are real. Since a,=-2pn+O(l), b, ,=n2+0(n) and c , ,=pz+E,  
d, = - b, the real fixed point (2.8) or (2.9) has the value 

h y ’ z -  l(bn4)1/31 n >> 1 ( A l . l )  

which may be generated and/or improved by the straightforward algebra analogous 
to that described in Znojil (1981). It remains for us to analyse the convergence of h, 
to (Al . l )  with the special initial conditions (2.6). 

After the first n = N>> 1 steps, we get some quantities 

h, = -Pn4I3 f Q, b=lb”31. (A1.2) 

They have to satisfy the asymptotic form of the recurrences ( 2 . 5 )  

- E = p 2 +  E. 2p n - 1 / 3 - 5  n-2/3+ 
QflQf l+  1 p” Q n + l  

- 
Qn+2 P 

(A1.3) 

When we replace Q , , - E ~ - ~ ’ ~ / ;  by @,,,, m=n, n + l ,  n+2 and assume that @=O(l) ,  we 
may convert (A1.3) into the relations 

1 
Qn+2= 

X + @ n @ n + l  

P 6’ 

(A1.4) 
2p -1/3+Gn-2/3+o - , (9 x=, n 

When we neglect x in (A1.4), we may simply put @n@n+,@n+2=lr i.e. 

G3,,,=R G3,,,+,=pR @3,,,+2=l/(pR2) O<<m=m,, mo+l, .  . . (A1.5) 

and see that the sequence @,, oscillates. These oscillations are damped by the influence 
of x, which follows from the geometric interpretation of (A1.4). 

A direct proof that @,, z@, ,+ ,=@,+~  necessitates rather complicated formulae. In 
the first step with large R and p these formulae become simplified as follows. 

For the sake of definiteness, let us assume that p = O ( h ) ,  R=O(&) and neglect 
the error factors l+O(x2).  Then, a change m+m’=m+l  in the first term of (A1.5) gives 

R ’ = R / ( l + x R ) .  (A1.6) 

Hence, the value of R becomes positive and small after a sufficient number of iterations. 
Similarly, the second item in (A1.5) transforms p in accord with (A1.4): 

(Al.7) 

The rate of convergence is quicker here and p + l  up to the higher-order corrections. 
The third term of (A1.5) preserves its form on the same l+O(x2)  level of precision, 
1/(pR2)+l/(p’R’*).  We may conclude that @,+0(1)  (cf figure 1). 

Beyond the above leading-order approximation, an accumulation (convergence) 
of the values h,  or @,, (near their fixed point) does not follow geometrically any more. 
Algebraic procedure necessitates a reintroduction of indices; the general ansatz (Al.5) 
ceases to be m independent in the higher precision. Indeed, the compatibility of (A1.5) 
with (A1.4) forces us to replace l / (pR2) by l / (pR2+x) and we must modify even the 
simple formula (A1.6) 
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P‘ i a) 

1 1 * i I  

- + - -. 

R 

I 
I 

Figure 1. Geometric proof of the leading-order convergence ( a )  of the mapping R + R ’  
in (A1.6), and (b )  of the mapping p + p ’  in (A1.7). 

RI=-+- +O(X2). 
l + x R  l + x R  

(A1.8) 

This is a good example of what becomes modified-a detailed analysis of (A1.8) shows 
that there still exists just one fixed point and the convergence takes place even up to 
the R = O( 1 )  level of magnitude, R + P - ’ ’ ~  > 0. We see that R does not drop down 
to zero-the convergence assumption C;;,, + 1 is not contradictory. 

In a small vicinity of the exact fixed points & = 1 - x/3 +. . . , we may employ the 
identities 

and, for the sufficiently small deviations dGn = $,, - &, we write 
d ~ , + 2 = - a 2 d ~ , + , - p 2 d G , .  

I 1  \ 

We may interpret these relations as recurrences: 

cl = -P2  d+,, - a2 d$,,+l ~ 2 =  - P 2  dG,,+, . 
When we invert the corresponding matrix 

(Al.9) 

(Al .  10) 

( A l . l l )  

u + u  = a 2 =  1 - x  uu = p 2 =  1 - x  ( A l .  12) 
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u , v = - k - -  1-- +0(x2)  
l - x  2 2  iY 3 

X 
=exp(*irr/3) --exp(ii.rr/6)+O(x2) J5 
= exp(*i$) e-* *,A '0 

we get 

um - v m  U m - l  - v m - l  

dG,+m+l = (-l)"+'- c1+(-1)" c2 
U - v  U - - U  

= exp( -mh ) M (  m )  I M ( m ) I < MO < CO (A1.13) 

i.e. d@,, + 0 for n + W .  Thus, in the vicinity of its real fixed point, the mapping (A1.4) 
generates the convergent sequences 6" from an arbitrary initial pair. 
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